A Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization

نویسندگان

چکیده مقاله:

In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some prior successful iterates. For iterates far away from the optimizer, we give a very strong nonmonotone strategy. In the vicinity of the optimizer, we have a weaker nonmonotone strategy. It leads to a medium nonmonotone strategy when iterates are not far away from or close to the optimizer. Theoretical analysis indicates that the new approach converges globally to a first-order critical point under classical assumptions. In addition, the local convergence is also studied. Extensive numerical experiments for unconstrained optimization problems are reported.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

an adaptive nonmonotone trust region method for unconstrained optimization problems based on a simple subproblem

using a simple quadratic model in the trust region subproblem, a new adaptive nonmonotone trust region method is proposed for solving unconstrained optimization problems. in our method, based on a slight modification of the proposed approach in (j. optim. theory appl. 158(2):626-635, 2013), a new scalar approximation of the hessian at the current point is provided. our new proposed method is eq...

متن کامل

A nonmonotone adaptive trust region method for unconstrained optimization based on conic model

In this paper, we present a nonmonotone adaptive trust region method for unconstrained optimization based on conic model. The new method combines nonmonotone technique and a new way to determine trust region radius at each iteration. The local and global convergence properties are proved under reasonable assumptions. Numerical experiments show that our algorithm is effective.

متن کامل

A nonmonotone trust-region method of conic model for unconstrained optimization

In this paper, we present a nonmonotone trust-region method of conic model for unconstrained optimization. The new method combines a new trust-region subproblem of conic model proposed in [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006) 217–231] with a non...

متن کامل

A Nonmonotone trust region method with adaptive radius for unconstrained optimization problems

In this paper, we incorporate a nonmonotone technique with the new proposed adaptive trust region radius (Shi and Guo, 2008) [4] in order to propose a new nonmonotone trust region method with an adaptive radius for unconstrained optimization. Both the nonmonotone techniques and adaptive trust region radius strategies can improve the trust region methods in the sense of global convergence. The g...

متن کامل

A retrospective trust-region method for unconstrained optimization

We introduce a new trust-region method for unconstrained optimization where the radius update is computed using the model information at the current iterate rather than at the preceding one. The update is then performed according to how well the current model retrospectively predicts the value of the objective function at last iterate. Global convergence to rstand second-order critical points i...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 16  شماره 1

صفحات  15- 33

تاریخ انتشار 2021-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023